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Abstract -~ To aid the design of uncooled IR sensors based on quartz microresonators, a heat
transfer analysis is carried out for the time-dependent temperature distribution in the resonator.
The quartz resonator is taken to be circular, homogeneous isotropic, with a ring electrode on its
front surface which is IR illuminated. It is assumed that the microresonator array is packaged in
high vacuum; the side and back surfaces of the resonator are thermally insulated. Only heat
conduction within the quartz resonator is considered ; radiation at the surfaces and heat conduction
through the bridges that link the resonator to the base structure are neglected. The boundary value
problem of heat conduction in the resonator is solved analytically ; expressions for the temperature
distribution before and after the photon flux is turned off are given. It is found that for the quartz
resonator under study, the time ¢, required to reach a uniform temperature distribution in the entire
resonator (the time constant) is critically dependent on the photon absorptivity of the ring electrode
on the front surface. For example, when the ring electrode has no effect on photon absorption,
1, = 9.52 microseconds ; however, if the ring electrode is fully reflective, 7, = 4.76 milliseconds. These
time constants are expected to play an important role in the design of the quartz microresonator IR
sensors. 13 1998 Elsevier Science Ltd. All rights reserved.

I. INTRODUCTION

Requiring no visible light to ““see”” in the dark, infrared (IR} sensors enjoy a wide range of
commercial and military applications. In general, IR sensors can be divided into two
categories : photon detectors which are usually cooled, and thermal detectors which may
not need to be cooled. Photon detectors are usually semiconductor devices with photo-
conductors, Schottky diodes, quantum well infrared photodetectors, or photovoltatic
devices as the sensing elements, while in the thermal detectors the sensing elements include
thermocouples, bolometers, Golay cells, and pyroelectric devices (Kruse et al., 1963 ; Sch-
lessinger, 1995). Recently, a microresonator-based high-sensitivity sensor and sensor array
is proposed by Vig et al. (1996) for use as uncooled IR sensors. This new class of IR sensors
has the potential to surpass the performance of other types of IR sensors, be they photon
detectors or thermal detectors. The design and fabrication of microresonator-based IR
sensors, however, pose many challenging problems.

Microresonators may have thickness # = 1-10 gm and diameter D = 100-1000 um,
with resonance frequencies of the fundamental mode (thickness shear mode) in the range
of 100-1000 MHz. Although such microresonators are not suitable for precision frequency
control applications due to their extremely high sensitivity to mass loading, they can be
used for IR detection and imaging, and for chemical and biological agent sensing. In
particular, when quartz is used as the resonator material, the temperature dependence of
the resonance frequency can be utilized to make precision thermometers (Gorini and
Sartori, 1962 ; Wade and Slutsky, 1962 ; Smith and Spencer, 1963 ; Ziegler and Tiesmeyer,
1983 ; Hamrour and Galliou, 1994). It is possible to sense temperature changes of micro-
kelvins, since quartz resonators’ frequency can vary with temperature monotonically with
a slope of about 107*/"K (Vig et al., 1996). With a proper resonator cut, the temperature
sensitivity of the sensor can be maximized (Heising, 1946). It is this temperature dependence
of the resonance frequency that enables one to develop microresonator 1R sensors (Vig et
al., 1996).
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An IR Sensor Array Circular Microresonators
Fig. 1. A schematic of an IR sensor array consisting of circular microresonators.

As shown schematically in Fig. 1, the IR sensor array consists of a large number of
microresonators. For example, within an area of 6.4 x 9 cm, about 80,000, 600 MHz quartz
resonators can be produced (Vig et al., 1996). Upon absorbing photons emitted from an
IR source, each individual resonator has a temperature increase A7, which in turn causes
a shift in the resonance frequency Af. Converting the measured frequency changes to a
color code on a gray scale, a video image of the IR emitting body can be generated. Clearly.
the quality of the image depends on the number of resonators per unit area, and the
temperature coefficient of frequency. For an IR sensor array, its performance is determined
by many other parameters including the IR absorbance, the thermal conductance to a heat
sink, and the time constant (the time required to reach a uniform temperature) (Vig et al.,
1996). Successful design of an IR sensor array requires a detailed analysis of the influences
of each of these parameters.

Although quartz itself is a good IR absorbing material near 9, 12, 20 and 26 um
wavelengths (Spitzer and Kleiman, 1961), a thin metal coating may be deposited to the
front (the IR illuminated) surface of the resonator to absorb photons more effectively from
the IR source. To further increase the absorption, an IR reflecting film may be deposited
on the entire back side of the resonator so that the IR energy transmitted through the
quartz plate is reflected back. Since these coatings are usually very thin (~ 10 nm), their
effects on the resonance frequency of the quartz plate can be neglected.

A quartz resonator usually has its major surfaces covered by electrodes made of a thin
sheet of metal such as aluminum. Since an electrode made of aluminum reflects most of the
IR energy, in order to maximize the IR absorption, the quartz microresonator IR sensors
are designed to have a ring electrode on the IR illuminated surface (Steward and Kim,
1996 Vig et al., 1996). Even with an IR absorbing coating, the ring electrode usually has
a lower photon absorptivity than the rest of the front surface of the resonator, resulting in
a non-uniform absorption of the incident IR energy, and leading to a time-dependent, non-
uniform temperature distribution in the resonator before and long after the photon flux is
turned off. Consequently, the shift in the resonance frequency changes within a certain
period of time. Since the resonance frequency-temperature relationship of a quartz res-
onator is calibrated assuming a uniform temperature field (Mason, 1950 Salt, 1987), it is
necessary to calculate the time needed to reach the uniform temperature field in the
resonator (the time constant) in order to determine the timing of IR image measurement.
The aim of this paper is to examine the transient thermal behavior of the resonator due to
the presence of the ring electrode on the front surface, and to predict the time constant.

The rest of the paper is organized as follows. The configuration of the resonator and
the basic assumptions made in the analysis is discussed in Section 2. In Section 3. the
boundary value problem of the heat equation is solved. Predictions of the temperature
distributions in and the time constant of the resonator are given in Section 4. The con-
clusions and discussions of the model assumptions are presented in Section 5.

2. PRELIMINARIES

Consider a single quartz resonator in the 1R sensor array, as shown schematically in
Fig. 2(a). The intensity of the IR source is assumed to be uniform across the front surface
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Fig. 2. The heat transfer problem of a circular quartz resonator shown in (a) with a ring electrode
on the IR illuminated surface can be formulated with the boundary conditions given in (b). The
dimensions of the resonator and the ring electrode are also shown.

of a single resonator, but varies from resonator to resonator. The resonator is assumed to
be a circular rotated Y-cut (e.g.. AC-cut) quartz plate with thickness # and radius «, coated
with a thin metal film on the front surface, and linked to the base-structure (a heat sink)
by three evenly spaced narrow bridges in order to achieve a controlled amount of thermal
isolation (Fig. 1). A ring electrode (made, e.g., aluminum) with inner radius r, and outer
radius r,, and a circular electrode plate with radius r, are, respectively, vacuum deposited
to the front and back surfaces of the quartz resonator. The ring electrode (possibly with a
photon-absorbing coating) on the front surface is assumed to absorb a fraction of the
incident 1R energy. The effect of multiple reflections of the incident IR energy within the
resonator due to the existence of the electrode (and possibly an IR reflecting film) on the
back surface is neglected.

As mentioned earlier, the front surface (z = 4) of the quartz resonator absorbs photons
emitted from the IR source. The resulting heat flux along the negative z-direction can be
estimated by (Kruse et a/., 1963)

g = BNheis (hH

where £ is the fraction of absorbed energy (absorptivity), N is the number of photons per
second input per unit area, i = 6.6252 x 107* W 57 is Planck’s constant, ¢ is the speed of
light, and 4 is the wavelength. The underlying assumption in eqn (1) is that the front surface
of the resonator is coated with a porous photon-absorptive thin (~ 10 nm) metal film so
that most of the incident IR energy is absorbed by this thin film (Lang et a/., 1992).
Consequently, the dependence of photon absorption on the thickness of the resonator can
be neglected, and the heat flux induced by the incident IR energy can be taken as a surface
source.

Generally speaking, the value of §in eqn (1) depends on the material of the resonator,
and the wavelength. Without coating, a 2.5 um thick quartz plate in the 8-14 um IR band
has f = 0.17 (Palik, 1985). With an IR absorbing coating, the value of # can be much
higher. For example, at a critical thickness of 12 nm and wavelength of 10 ym, a vacuum
evaporated gold film has ff =~ 0.5 (Lang ¢t «l., 1992). A porous silver film under similar
conditions can have § > 0.99 (Lang ¢z /., 1992). To make the present study more generic,
in what follows, the heat flux ¢ is taken as a design parameter without specifying explicitly
the value of f.
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The heat transfer problem of the quartz microresonator shown in Fig. 1 is in general
very complex, since heat conduction, convection and radiation can all be present. However,
when the IR sensor array is packaged in high vacuum, heat convection can be neglected,
and heat conduction from the resonator to the surrounding media is only through the
bridges. The thermal conductance G of the resonator due to both conduction via quartz
bridges and radiation from the surface of the resonator can be estimated by (Vig et al.,
1996)

knwb
G — ,ng,, +8naT3a2 (2)

where k(=8.3 W/mK) is the effective isotropic thermal conductivity of quartz, n, w, b and
L are the number, width, thickness, and length of the bridges, ¢ and T are the radius and
temperature of the resonator, and ¢ = 5.67x 10~* W/m? K* is the Stefan-Boltzmann
constant. To simplify the heat transfer analysis, in the following, we assume that G = 0,
i.e., we neglect heat conduction due to the bridges, and radiation. (This assumption will be
discussed in more detail in Section 5.) Thus, as indicated in Fig. 2(b), at the cylindrical
surface (r = a) and the back surface (z = 0) of the resonator, the heat flux is zero, i.e.,

0T

=0, =0, 0<r<a (3a)
oT

(:;7:0, r=aq, 0<z<h. (3b)

For an IR sensor with cut-off time /. (the time at which the photon flux is turned off’;
usually ¢, is a fraction of the frame time), the time-dependent incident heat flux f(z) at the
front surface can be given by

=g, O<ri<y,
=0, >1. 4)
Since the resonator is in high vacuum, it is assumed that the non-zero heat flux at z = A 1s

entirely due to photon absorption. The boundary condition at z = A is thus given by (Fig.

2(b))
k _ =fn), 0<r<r

=3/0), ry<r<r

=f), r<r<a )]

where y is the relative absorptivity of the ring electrode. If the ring electrode has no effect
on photon absorption (“fully” absorptive), y = 1; if it is fully reflective, y = 0. Note that
according to (1), the ring electrode has absorptivity 7.

In summary, the boundary value problem of heat conduction in the circular quartz
resonator consists of the following governing equation and initial and boundary conditions:

oT .
2, VT (6a)
T|/fo = Tr) (6b)
oT

W =0 (6¢)
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oT

|, =" (64)

z=0

cT

0z

= n(r, 1) (6e)

o=h

where T}, is a reference temperature, o = k/pc, is the thermal diffusivity, with p and ¢, being
the density and specific heat of quartz, respectively ;

r](r'lt) :f([)/k, Ogr<r0
=0k, ro<r<r,
=fk, r<r<a (7)
and T(r,z, t) in (6) 1s the temperature field in the resonator. Although the thermal con-
ductivity of quartz is orthotropic, for simplicity, in this study, the quartz resonator is taken
to be isotropic. Further, the thickness increase due to the electrodes is neglected. Let

Tz 8) = u(r. 2.0+ Ty ; (®)

the boundary value problem defined in (6) becomes

(1o P .
o0 Hlrar\"ar) T 5 (9a)
U,y =90 (9b)
Ju
o _ =0 (9¢)
Cu
) (9d)
554 -0
Cu ‘
=l = nir.1). {9¢)
Y )

The solution of the governing equation (9a), together with the initial and boundary con-
ditions given in (9b)—(9¢), is discussed in the next section.

3. SOLUTIONS OF HEAT CONDUCTION

The heat conduction problem defined in eqn (9) and (7) is solved by performing
Laplace transform (Arpaci, 1966)

i(r, z.p) = f urz e di (10)
0

to eqn (9a) and the boundary conditions (9b)-(9e). Using the initial condition (9b), we
have

V2i—

v, .
=0 (11a)

with
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o
— =0 11b
orl._, ( )
iy
| =0 (1lc)
€2y
A =Fo.p) (11d)
0z e h

where F(r, p) is Laplace transform of n(r, 1) :

Fr,p) = qu,“ —e ™), 0<r<r

4

—_ k)p(l —e F"), Fo <r< ¥y
=T —em). 1 <r<a (12)
kp

Solving Helmholtz eqn (11a), together with the homogeneous boundary conditions (11b)
and (11c) using the separation of variables approach, we have

a(r,z.p) = Z A J, (k) cosh w,z (13)

f=0)

where

W, = V/k,f +pla; (14a)
Ju(x) is the Bessel function of order zero, k, are the eigenvalues given by
k.= uja (14b)
with g, being the roots of
J() =0 (14c)

where J,(x) is the Bessel function of order one. For convenience, we assume that

o <t < Uy < p3 < ---. Note that y, =0, i.e., k, = 0. The unknown constants A4, are
obtained by satisfying the boundary condition (11d):
g(l—e %) roor
Ay =t 2| ] =y -2 L ,
"7 kpw, sinh wyh (=) a: & (1)

2g(1 —e ") (1 —}’)77 [”u Jy (kf"o) n J, (kirl_)

= kpakodotkaysinh | @ Jotka)  a Jo(ka) ] =123 (5

Performing the inversion of Laplace transform to #(r, z, p) given in eqn (13), we have for
the temperature field u(r, z, 1) in the resonator (Appendix A):

() for0<r<t,
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where
= = 1,23, (17)
h

Solutions of the heat transfer problem for several special designs of the resonator can
be obtained directly from (16). First, if the photons from the IR source is focused onto the
circular area inside the ring electrode for energy-trapping purposes (Steward and Kim,
1996), the temperature field is obtained readily from (16) by setting r, = a, y = 0. Second,
when the effect of the ring electrode on photon absorption can be neglected, i.e., y = I, the
temperature field in the resonator, which is identical to that in an infinitely large quartz
plate u(z, f) (Appendix B), can be obtained from (16) by letting ry = r,, or y = 1 :

(1) forO<r<t,

o 1[0 1\ 2 )"
wz o =2 [(’i + = < - )* = Z (1" e~ i1 Cos A, ] (18a)
2 ;

/A N

(i) for¢ =1,

a2

1AL

e _1 " L9 ;2
Z ( ) ( —1/.,“,(! »fcl_e" W"_']) CcCOS A,,Z:l- (lgb)

Note that #°/a (« is the thermal diffusivity of quartz) has the dimension of time and can be
used as a characteristic time scale.
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4. TEMPERATURE DISTRIBUTION IN THE RESONATOR

A unique feature in the design of quartz microresonator IR sensors is the presence of
a ring electrode on the front surface which can be fully absorptive, partially absorptive, or
fully reflective. To gain insight, in the following, these three types of ring electrodes are
modeled, and their effects on heat transfer in the resonator quantified. Emphasis is placed
on the prediction of the time constants of the resonator. For all the cases considered in this
section, the resonator and the ring electrode are assumed to have dimensions a/h = 30,
ro/a = 1/6, r//a = 1/3. Since the electrode is very thin and has a high thermal diffusivity
compared with the quartz plate, the time required to diffuse heat into the ring electrode is
neglected.

4.1. Fully absorptive ring electrode, y = 1

When the effect of the ring electrode on photon absorption at the front surface is
negligible, ¥ = 1. In this case the temperature field in the resonator is given by eqn (18)
which is independent of the radial position r in the resonator. As illustrated in Fig. 3, when
time 7 is such that 0.2/« < ¢ < t., temperature in the resonator increases linearly with time
t. However, when t > ¢, temperature in the resonator approaches rapidly to a constant
value. In Fig. 3, the normalized temperature (T— Ty)k/qh is plotted against the non-
dimensional time at/#? for z/h = 0.2, 0.4, 0.6, 0.8, 1.0 for as /A* = 3.0. Note that after the
photon flux is turned off at f = 7, it takes only ¢, = 1 — ¢, = 0.4h*/a to reach the steady-state
uniform temperature 7 = T,+agt /kh. For a quartz resonator with o = 4.2x 10™° m?/s
(Mills, 1992) and / = 10 um, 1, is merely 9.5 microseconds. To further illustrate this feature,
in Fig. 4, the relative temperature (7— Ty)k/gh— gt /kh is displayed as a function of
a(1— 1)/l for zjh = 0.2, 0.4, 0.6, 0.8 and 1.0. It is worth mentioning that the time constant
t, = 0.4h%u is found to be independent of the cut-off time z..

The time constant ¢, determines when the IR image measurement should be taken after
the photon flux is turned off at ¢ = r.; it plays an important role in the design of quartz
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Fig. 3. Normalized temperature (7 7T,)k/qh as a function of the nondimensional time at/A’ at
z/h =0.2,0.4, 0.6, 0.8, 1.0 for a resonator with a fully absorptive ring electrode (y = 1). The cut-off
time is taken to be ar./h* = 3.0
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microresonator IR sensors. Usually the relationship between the change in temperature AT
and change in resonance frequency Af is calibrated assuming that temperature in the
resonator is uniform. Thus, if the IR image is taken before time r reaches 1.+, the
nonuniform temperature distribution in the resonator may render the calibrated relation-
ship between AT and Afinvalid. For a resonator with a fully absorptive ring electrode, the
very small time constant implies that temperature in the resonator becomes uniform shortly
after the photon flux is turned off, and the IR images can be taken with a short frame time.
However, in reality, the ring electrode may be partially absorptive or even fully reflective,
and the corresponding time constant ¢, may become large, as will be discussed in the
following sub-sections.

4.2, Fully reflective ring electrode, y = 0

When the ring electrode has no photon absorption, y = 0, i.e., the incident heat flux
is zero for ry < r < r|; the resulting temperature distribution in the resonator is highly
nonuniform. Shown in Fig. 5(a) is the normalized temperature (T — T;)k/gh as a function
of the radial position r/a at at/h* = 1.0 for z/h = 0.2, 0.4, 0.6, 0.8 and 1.0. The temperature
distribution for the resonator with 7 = 1 is also shown for comparison. It is seen that
temperature increases with z, as might be expected. It is clear that there is a shape drop in
temperature in the region beneath the ring-electrode. Due to the high temperature gradient
near the edges of the ring electrode, heat flows into the region underneath the ring-electrode
from other regions. To drive this point home, in Fig. 5(b), (T T,)k/qh is plotted as a
function of r/a at a larger time scale at/h* = 10.0. The curves in Fig. 5(b) demonstrate that
due to heat conduction, temperature in the region beneath the ring is increased compared
with that at az/A* = 1. This implies that, compared with the case of a fully absorptive ring
electrode, it will take a much longer time to reach a uniform temperature distribution in
the resonator.
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To show how the temperature distribution in an IR microresonator becomes uniform
after the photon flux is turned off, in Fig. 6(a), curves of (T— Ty)k/qh vs r/a are shown for
atfh* = 4, 8, 12, 20, 50, 100 and 200. The cut-off time is taken to be at/#* = 3. For a
microresonator with a/h = 30, ryfa = 1/6. r\ja = 1/3, it takes a(r—t.)/h° =~ 200 to reach a
rather uniform temperature distribution. This implies that for the quartz resonator with
h =10 um, ¢, ~ 4.76 ms. This time constant 7, is found to be independent of the cut-off
time 7., as can be seen from Fig. 6(b) in which the curves of (T— Ti,)k/gh as a function of
ria are plotted for at./h* = 300 (for a quartz resonator with /4 = 10 gm and cut-off time
. = 10 ms, ar,/i* = 385). Note that in Fig. 6(a) and (b), temperature in the resonator is
calculated after it becomes uniform in the thickness direction.

4.3. Parrially absorptive ring electrode, ) < < |

The ring electrode on the front surface may have partial absorption of the incident
photons, i.e., 0 <y < 1. To quantify the influence of photon absorption of the ring elec-
trode, calculations were carried out for the temperature distribution in the quartz resonator
at nondimensional time or/i* = 1.0, 10.0 and 100.0. Shown in Fig. 7(a) are curves of the
normalized temperature (7 — T,)k/gh vs radial position r/a in the resonator for z1/#* = 1.0,
zih = 0.5 for y = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0. Note that » =0 and y = 1 correspond to
fully reflective and fully absorptive ring clectrodes, respectively. Evidently, for a ring
electrode with a small value of 7, the drop in temperature in the region beneath the ring-
electrode is significant. The high temperature gradient near the edges of the ring electrode
causes heat to flow into the region covered by the ring-electrode. The non-uniformity of
the temperature distribution decreases as y increases, as can be seen from Fig. 7(a). Though
less dramatic, the same general trends are true at larger time scales, as illustrated in Fig.
7(b) and (c) in which curves of (7— Ty)k/gh vs r/a are shown for at/A” = 10.0 and 100.0,
respectively. For all the curves shown in Fig. 7(a)—(c), it is assumed that 7 < 1.

As mentioned earlier, a small ¢, is desirable in designing the quartz resonator IR
sensors. To reduce the time constant /., one can increase the relative absorptivity ; of the
ring electrode by using a more absorptive metal for the electrode, or by depositing a photon-
absorbing coating on the electrode. To illustrate the effect of 7 on the time constant ¢, in
Fig. 8. 1, is shown as a function of y for the quartz resonator under consideration (a/f = 30,
rofa = 1/6. r\ja = 1/3) for cut-off time a7./#* = 300. In calculating r,, the maximum value of
the relative variation in the temperature (7— T,,)k/qh along the radial directionfor0 < r < a
is set to be 0.005. It is seen from Fig. 8 that, for 0 < < 0.8, ¢, decreases with - rather
slowly. For example, at y = 0.8, 21,/h* = 94, which is about half of the value at ; = 0. To
significantly reduce the time constant 1., the fraction 3 of photon absorption of the ring
electrode has to be larger than 0.8. Note that the design curve shown in Fig. 8 is valid for
other values of ¢, as well since the time constant ¢, is essentially independent of the cut-off
time 7.. However, it depends on the dimensions of the resonator as well as the ring electrode.

5. CONCLUDING DISCUSSIONS

To aid the design of uncooled IR sensors based on quartz microresonators, a heat
transfer analysis is carried out for the time-dependent temperature distribution in the quartz
resonator which has a ring electrode on the IR illuminated surface. Emphasis is placed on
the effect of the ring electrode on the transient thermal behavior of the resonator ; the effect
of the electrodes on the dispersion relations of the resonator can be found in Steward and
Kim (1996). The ring electrode is assumed to have a relative photon absorptivity 0 < » < |
while the region outside the ring electrode always has v = 1. Only heat conduction within
the quartz resonator is considered ; radiation at the surfaces and heat conduction through
the bridges that link the resonator to the base structure are neglected. The boundary value
problem of heat conduction in the resonator is solved analytically ; expressions for the
transient temperature distribution before and after the photon flux is turned off are given.

The solution of the temperature field in the resonator indicates that after the photon
flux is turned off at ¢ =y, it takes only ¢ ~ 0.4//» to reach a uniform temperature
distribution in the thickness direction. When the ring electrode has no effect on the photon
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absorption (i.e., y = 1), this is the time required to have a constant temperature in the entire
resonator (the time constant). For example, for a quartz resonator with thickness h = 10
um, t, = 9.5 us. However, when a fully-reflective ring electrode (i.e., y = 0) with ro/a = 1/6,
rja = 1/3 is placed on the front surface of the resonator, it takes ¢, &~ 2004*/o to reach a
uniform temperature distribution in the entire resonator. For a quartz resonator with
thickness 4 = 10 um, the corresponding time constant ¢, = 4.76 ms. When the ring electrode
is photon-absorptive with absorptivity 7, the time constant ¢, is a function of y. It is found
that the time constant ¢, can be significantly reduced only if y = 0.8.

The very large difference (500-fold) in the time constants 7z, can be understood as
follows. When the ring electrode is fully absorptive, in order to reach a uniform temperature
in the resonator, the heat flux at the front surface only needs to travel through a distance 4
(the thickness). For a quartz resonator with thickness # = 10 yum and thermal diffusivity
o =4.2x107% m?/s, the corresponding characteristic time scale for thermal diffusion is
given by ¢, = h*/a = 23.8 microseconds. On the other hand, when the ring electrode is fully
reflective, heat flux needs to travel a distance about 0.7« (with @ being the radius of the
resonator) to realize a uniform temperature distribution, as can be seen from Fig. 5(a).
This corresponds to a characteristic time scale 1, = (0.7a)*/x = 10.5 milliseconds if a/h = 30
is assumed. The ratio of these two characteristic time scales /¢, is 441 which is quite similar
to the 500-fold difference in the time constants. Clearly, the geometry and size of the quartz
plate and the ring electrode can have a significant effect on the values of the time constant
t,; such an effect should be further quantified.

The time constant ¢, plays an important role in the design of the quartz microresonator
IR sensor array, since it determines when the IR image measurement should be taken after
the photon flux is turned off at r = ¢. Usually the relationship between the change in
temperature AT and change in resonance frequency Af is calibrated assuming that tem-
perature in the resonator is uniform. Thus, if the IR image is taken before time ¢ reaches
t.+ t,, the nonuniform temperature distribution in the resonator may render the calibrated
relationship between AT and Afinvalid. One way to reduce the time constant 7, 1s to increase
the relative absorptivity y of the ring electrode by using a more absorptive metal for the
electrode, or depositing a photon absorbing coating on the electrode. However, as indicated
by the curve shown in Fig. &, in order to significantly reduce the time constant i, the
electrode material or the coating should be selected such that y > 0.8.

To simplify the thermal analysis for the quartz microresonator IR sensors, in this
study, several assumptions are made. For example, the thermal conductivity & of quartz is
taken to be isotropic, although in reality it is orthotropic. For example, at 300°K, the
thermal conductivity along the optical axis direction is k; = 10.4 W/mK, while per-
pendicular to the optical axis it is k, = 6.2 W/mK. Since the values of the thermal con-
ductivity in the radial and thickness directions of a rotated Y-cut quartz plate are within
the range k. < k < k, in the isotropic approximation, we simply take k = (k, +k,)/2. This
approximation gives a relative error of less than 26% of the predicted time constants.
Although desirable, an analytical solution of the heat transfer problem of a circular quartz
plate is difficult to obtain when the orthotropy of thermal conductivity is included, since
the corresponding problem is no longer axisymmetric. When the microresonator is made
of a rectangular Y-cut quartz plate, an analytic solution of the heat transfer problem
including the material anisotropy is given in Bao (1997).

In the heat transfer analysis given above, the relatively small effect of multiple reflec-
tions of incident IR energy in the quartz plate is neglected. A simple calculation using
optical multi-reflection theory indicates that a 10 ym thick quartz plate with a gold mirror
attached to the back of the resonator will have about 10% higher absorption than that
without the mirror (Kim, 1996). Further, when the front surface of the resonator is coated
with a thin (~ 10 nm) porous photon-absorptive metal film, most of the incident IR energy
is absorbed by this thin film (Lang er al., 1992). It is therefore reasonable to assume that
the photon absorption does not depend on the thickness of the resonator, and the resulting
heat flux acts as a surface source, asindicated by eqn (1). A detailed numerical quantification
is needed in future studies of the effect of multiple reflections in the quartz resonator without
a thin IR absorbing film on the front surface.
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As mentioned earlier, a real IR microresonator has heat conduction through the
bridges and radiation at the resonator surface. The effects of the bridges and radiation on
the transient behavior are neglected in this study (i.e., G = 0) since they are secondary
compared with that of the ring electrode. Specifically, for the microresonator IR sensors
considered in this study, the thermal conductance G is

k .
G = _”LYIZ +8n0T?a* = 53.26 x 107 *W/K (20)

where k=83 W/mK, n=3, w=5=10 um, L = 50 ym, a = 300 um. 7T = 300°K are
assumed. The corresponding thermal time constant of the resonator is given by (Kruse e?
al., 1963)

T = amah _ 104.8 milliseconds (21)

where ¢, = 1.974 x 10° Ws/m* K is the specific heat of quartz. Since 7; is much larger
compared with the long time constant ¢, = 4.76 milliseconds for the resonator with a fully
reflective ring electrode, the effect of assuming G = 0 is very small. Needless to say, the
above analysis is just an estimate, the exact influence of heat conduction via the bridges on
the time constant 7z, should be quantified (using, e.g., a finite element analysis). It is also
necessary to analyze thermal conduction in quartz resonators of rectangular geometry
(Bao, 1997), since they have a higher fill factor than the circular ones.
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APPENDIX A
From eqns (12) and (13), we have

g(l—e ") 1 5N
i - : P+ (=) (22— ) ) cosh woh
ar.z.p) kp , sinh wyh =y R cosh o

~ 2coshwz  Jylkr) <r70 Jikro) 1y J1(/<m.)>] (A1)

=) ,Zl ;k‘(:), sinh wh Jotk,a)\ a Jo(ka) a Jolkia)

where
W, = \/1%, w; = \k,lTp/;c (A2)
Let
Fi(p) == (1= (A3)
kp
coshw;z
Fafz,p) = (%S—S]S—h—(-(:'—h (Ad)

It is readily shown that the inversion of &F,(p) is the function f{¢} defined in (4). The inversion of F,(z, p). g(z, 1),
can be obtained using the inversion theorem of Laplace transform

~

1 .
g(z. 1) = i“':J Fy(z,p)edp (A5)
i,

where L is a straight line parallel to the imaginary axis in the complex p-plane ; L is so chosen that in the region
on the right side of L. Fy(z, p) has no singularity. Defining a new integration variable s,

s=kI+pia: (A6)
eqn (AS) can be rewritten as
i sh ';:
1) o ij ..EMS‘ oo K’ ds. (A7)
ni )., vV ssmh\/sh

Note that although V/; is a multi-valued function of s, the integrand is single-valued. Note also that sinh \/;h has
infinitely many first-order poles s, on the negative real axis

o= = a—01.2.3 (A8)
W

The integral in (A7) can be evaluated using the residual theorem (Morse and Feshbach, 1953)

gz 1) =oe " Z/: Res |:

n=1

N /s sinh Vv 'sh ”:|

:%v ’*"'[Hz Y (—1)e ”‘:’cos}.,,:] (A9)

PECR|
where
e=nnth, n=123, ... (A10)

Applying the convolution integral of Laplace transform, we have

u(r,z, 1) = [l+(l—)') (L rl)]EJ‘/ 1) [H—Z Z( e "’"5“’"cos),,,z]dr

a

(1= & 1 Jylk; g (kr 3 g i i
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ne=

Performing the integration with f{r) defined in (4), the temperature field in the resonator is given by

1) forO0<r<u,



3652 G. Bao and W, Jiang

h e N[ 1/ 1 28—y )
e =P rean (B | (7 ) T e o

N 7‘](' “,) 17 -]p(/‘ ’) ["g /1 (/‘;'j) N J| (/f,"l):l ‘:

kha &0k, Jolka) AT

lme ey 220 (1—e *& 0% cos i,z |
a Jolka) a J,(ka) e T Z ‘ oot :|

PR A

(i) fore = 1.

p w2 e 1 o
w(r.z, ) = ”LI +(1-7) (,1; - ’l)—Hj + - y - = I R 1"")(.‘08/.,,:]
k a a /AL e

7([{1 Jok,r) l:;“ Jitkirg) Sk J]

kha ,Z/\ Jolka)| a /n(ﬂ;; ;Tl;(l\a

[ 1 . (-1 BT T .
% [ - (¢ TR ¢ zh 1)+7 { ,)7_; ((, R U — wlh; 4/”)1) cos /‘“:)J. [161’))
IS ST 4

APPENDIX B

Consider heat conduction of an infinitely large quartz plate with thickness /. At the front surface = = 4, due
to the heat flux generated by IR illumination, we have

heos =l (B1)

where T(z, 1) is the temperature field and f{7) is defined in (4). At the back surface z = 0, (7/cz = (. Assuming
that u(z, 1) = T(z, 1) — T, the boundary value problem for u(z, 1) is given by

‘u u
o (B2)
ot (z
ul, v =10 (B3)
i
2= (B4)
oy,

Ju .

P = f{1)/k (BS)

éxl,

where x is the thermal diffusivity of quartz.
Let
6 i
(7, 1) = \/,/ ,hﬁ u(z, 1y cos £,zdz (B6)

where 4, = nn/h. Applying the Fourier transform (B6) to the governing equation (B2), performing integration by
parts, and using the boundary conditions, we have

. =
W aii=r? 2 B7
T (B7)

Solving (B7) with the initial condition (B3) yields

(i) n=20,
% /i " d
Z [) —]\\/ /*IU[]f(T) T (BS)
iy n#0,n=12.3....
w(z, 1) = l\ Z‘(fl)“( ""T'COS/:,,:“ /(r)("“rfldt (B9}
Tyl 0

Inserting f{) into (B9). and using the fact that for — 7 < x < n (Gradshteyn and Ryzhik, 1980):
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